Trephine
AboutSpecialtiesPricingLoading...

Copyright © 2024 Trephine. All rights reserved. The content of this site is intended for health care professionals.

TREPHINE

Terms Of UsePrivacy Policy

Cardiovascular researchJournal Article

06 May 2025

Oxidative DNA damage promotes vascular ageing associated with changes in extracellular matrix-regulating proteins.

Aims

Vascular ageing is characterized by vessel stiffening, with increased deposition of extracellular matrix (ECM) proteins including collagens. Oxidative DNA damage occurs in vascular ageing, but how it regulates ECM proteins and vascular stiffening is unknown. We sought to determine the relationship between oxidative DNA damage and ECM regulatory proteins in vascular ageing.

Methods and results

We examined oxidative DNA damage, the major base excision repair (BER) enzyme 8-Oxoguanine DNA Glycosylase (Ogg1) and its regulators, multiple physiological markers of ageing, and ECM proteomics in mice from 22 to 72 w. Vascular ageing was associated with increased oxidative DNA damage, and decreased expression of Ogg1, its active acetylated form, its acetylation regulatory proteins P300 and CBP, and the transcription factor Foxo3a. Vascular stiffness was examined in vivo in control, Ogg1-/-, or mice with vascular smooth muscle cell-specific expression of Ogg1+ (Ogg1) or an inactive mutation (Ogg1KR). Ogg1-/- and Ogg1KR mice showed reduced arterial compliance and distensibility, and increased stiffness and pulse pressure, whereas Ogg1 expression normalized all parameters to 72 w. ECM proteomics identified major changes in collagens with ageing, and downregulation of the ECM regulatory proteins Protein 6-lysyl oxidase (LOX) and WNT1-inducible-signaling pathway protein 2 (WISP2). Ogg1 overexpression upregulated LOX and WISP2 both in vitro and in vivo, and downregulated Transforming growth factor β1 (TGFb1) and Collagen 4α1 in vivo compared with Ogg1KR. Foxo3a activation induced Lox, while Wnt3 induction of Wisp2 also upregulated LOX and Foxo3a, and downregulated TGFβ1 and fibronectin 1. In humans, 8-oxo-G increased with vascular stiffness, while active OGG1 reduced with both age and stiffness.

Conclusion

Vascular ageing is associated with oxidative DNA damage, downregulation of major BER proteins, and changes in multiple ECM structural and regulatory proteins. Ogg1 protects against vascular ageing, associated with changes in ECM regulatory proteins including LOX and WISP2.

COI Statement

Conflict of interest: none declared.

References:

  • Greenwald SE. Ageing of the conduit arteries. J Pathol 2007;211:157–172.
  • Dao HH, Essalihi R, Bouvet C, Moreau P. Evolution and modulation of age-related medial elastocalcinosis: impact on large artery stiffness and isolated systolic hypertension. Cardiovasc Res 2005;66:307–317.
  • Shao JS, Cai J, Towler DA. Molecular mechanisms of vascular calcification: lessons learned from the aorta. Arterioscler Thromb Vasc Biol 2006;26:1423–1430.
  • Aronson D. Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens 2003;21:3–12.
  • Wang M, Kim SH, Monticone RE, Lakatta EG. Matrix metalloproteinases promote arterial remodeling in aging, hypertension, and atherosclerosis. Hypertension 2015;65:698–703.

Article info

Journal issue:

  • Volume: 121
  • Issue: 4

Doi:

10.1093/cvr/cvae091

Share: